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SUMMARY

Numerical optimization techniques in �ow design are often used to �nd optimal shape solutions, re-
garding, for instance, performance, �ow behaviour, construction considerations and economical aspects.
The present paper investigates the possibilities of using these techniques in the design process of a
hydropower plant. This is realized by optimizing the shape of an existing sharp heel draft tube and
validating the result with previously performed experiments. The actual shape optimization is carried
out with the response surface methodology, by maximizing the average pressure recovery factor and
minimizing the energy loss factor. The result from the optimization shows that it is possible to �nd
an optimal solution on rather coarse grids. The location of the optimum is similar to the experiments,
but the improvements are unexpectedly small. This surprising result indicates that the simulated �ow
�eld does not completely act as the real �ow, which may be a result of the applied inlet boundary
conditions, insu�cient turbulence models and=or the steady �ow assumption. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Shape optimization for �ow design refers here to a numerical procedure to, in some per-
spective, �nd an automatic optimized bounding geometry of an industrial �uid �ow. The
technique has been demonstrated in a number of cases, but several problems have to be
solved before it can be routinely applied in product development [1–3]. One problem is that
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massive computational resources are often required to solve the non-trivial �ow equations for
several geometries. Others are that the stability of the optimum computed is often unknown
and that it is not evident how to choose the best optimization technique. The insu�cient
physical description of the �ow adds to the complexity. Conversely, there are many bene�ts
of a fully working procedure. It will, for instance, be possible to get reliable results in
reasonable time, to �nd new products with better functionality and to save cost and time in
product development, maintenance and support. It is therefore vital to further develop, verify
and validate e�cient shape optimization techniques.
This paper considers a shape optimization of the Turbine-99 draft tube geometry for-

merly used in two ERCOFTAC Turbine-99 workshops [4–6]. It is a physical 1:11 model
of H�olleforsen sharp heel draft tube. The sharp heel construction is representative of designs
around 1950, and is a rather odd construction from a �ow design perspective. It was basi-
cally chosen in order to reduce investment cost. Nevertheless, the e�ciency of such a draft
tube has been proved to be good. Still, small improvements to the draft tube shape are of
importance due to huge production volumes. Several successful experimental investigations
have also been performed to redesign these kinds of sharp heel draft tubes into curved draft
tubes, showing that it is possible to reduce the hydraulic losses in the draft tube, and thereby
increase the overall e�ciency of the hydropower plant [7, 8]. Smoothing the sharp heel corner
of the Turbine-99 draft tube with a removable curved insert, for example, yields an e�ciency
improvement in the turbine of about 0.5% for both model and full-scale tests [8]. Note that
the actual performance increase in the draft tube is unknown, but the �ow �eld analysis in-
dicates that it is higher than 0.5%. The present shape optimization is done according to this
experimental redesign, in order to validate the optimization result and to study how the opti-
mal design is a�ected by both grid size and grid error. The optimization is performed with
the response surface methodology (RSM) and the overall objective is to minimize the hy-
draulic losses by maximizing the average pressure recovery factor and minimizing the energy
loss factor.

2. TECHNICAL APPROACH

A general �ow chart for a shape optimization strategy in �ow design consists of three stages
in the following order: geometric parameterization, computational �uid dynamic (CFD) sim-
ulation and numerical optimization, see Figure 1. In the �rst stage an appropriate number
of design variables are chosen so that they describe the modi�cations of the shape of the
geometry in a feasible way. The second stage considers the actual CFD calculation, where
the �rst action is to build or modify the geometry based on the values of the design variables
from previous iteration. If such results do not exist, initial values have to be set to get a
proper initial shape of the geometry. When this is done, the computational grid is gener-
ated and the �ow equations are solved. The results from the calculations are then sent to
the numerical optimization stage, where an objective function and an optimization algorithm
have been speci�ed. The optimization evaluation will then result in some new values of the
design variables, which in next turn leads to a modi�cation on the shape of the geometry and
an additional CFD simulation if the result is inadequate. On the other hand, if the result is
satisfactory, an optimum design has been found. Details on these three stages for the draft
tube in focus now follow.
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Figure 1. A general shape optimization �ow chart.

Figure 2. The original ERCOFTAC Turbine-99 draft tube geometry on top and the sharp heel
modi�cation of it on bottom (mm).

2.1. Geometric parameterization

The main challenge with the geometrical parameterization is to �nd a minimum amount of
design variables that cover such as wide a spectrum of shapes as possible. When alterations
of the sharp heel region are done according to the experimental redesign presented in Ref-
erence [8], the number of design variables are reduced to the radius R of the heel insert, as
shown in Figure 2. The actual geometric parameterization and de�nition of the design variable
follows the adapted design parameterization presented in Reference [1], since this method is
an appropriate choice when redesigning old constructions. It should, however, be recalled that
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the design variable R is neither the only one nor the best one. It is used here simply to vali-
date the present work with previously successful experimental e�ciency improvements studies
[7, 8], together with the fact that it is a rather simple, inexpensive and not so time-consuming
redesign of an old construction. Changing the inlet cone part of the draft tube will probably
give the highest e�ciency improvements, since most of the pressure recovery takes place in
this portion of the �uid domain. A reconstruction of this part is, however, not straightforward.

2.2. CFD simulation

The commercial CFD code CFX-5 [9] is used to solve the �ow in the draft tube, with the
assumption of steady, incompressible and turbulent water �ow. The solver is a coupled solver,
based on the �nite volume method on an unstructured grid. It uses shape functions to evaluate
the derivates for the pressure gradient term and the di�usion term [9]. The advection term
is discretized with a formally second-order accurate scheme (numerical advection correction
scheme with a blend factor of 1.0) in the end of the solution progress, for both the continu-
ity and momentum equation as recommended in References [9, 10]. In the beginning of the
solution progress, a locally automatic changing scheme between �rst and second order (high
resolution) was chosen to increase the robustness of the solution progress. For the turbulent
equations, however, only a �rst-order scheme is used during the whole solution progress due
to robustness problems.
The �uid domain or the actual geometry of the Turbine-99 draft tube is built and modi�ed

with the commercial CAD software I-deas NX 10 [11] according to the geometric parame-
terization discussed earlier. Note that the draft tube geometry is also extended at the outlet
so that it follows the provided grid at the second ERCOFTAC Turbine-99 Workshop [4, 6].
This is done to ensure that a constant average static pressure is an acceptable assumption at
the outlet of the draft tube.
The computational grid is generated with the commercial structured grid generator ICEM

CFD Hexa [12]. To minimize the numerical errors and the e�ects of di�erences in the grid
topologies, the same grid topology was used for all radii of the heel insert, implying that the
generated grids are altered only in the sharp heel corner. This precaution is important since
it has been shown that the result of a CFD calculation is closely connected to the topology
and quality of the grid, especially at the inlet and the cone of the draft tube [4–6]. To also
ensure that the grid topology has as good quality as possible (angles, aspect ratios, etc.), the
grid resolutions are non-uniform.
The applied inlet boundary conditions are exactly the same as (regarding velocity compo-

nents, �uctuations, symmetry assumption, radial velocity assumption, dissipation length scale,
etc.) those used for the T-mode in the second ERCOFTAC Turbine-99 Workshop [4, 6, 13].
The experimental e�ciency improvements reported here were also conducted for this opera-
tional mode [8]. Note that the T-mode represents the optimal operation condition, i.e. measure-
ments from the point with highest e�ciency on the propeller curve. During the optimization
the inlet pro�le is kept �xed, although it is probably sensitive to draft tube modi�cations.
In addition, it has been showed that, for example, the radial velocity assumption has a large
impact on the draft tube performance [14]. This type of sensitivity analysis of the inlet bound-
ary conditions will, however, not be performed here. At the outlet two zero-pressure condi-
tions are implemented to increase the robustness of the solution progress. To start, an opening
boundary condition is used that allows �ow into and out of the �uid domain, while toward
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the end and in most of the solution progress an outlet boundary is used that allows only �ow
out over the boundary. This procedure improves the convergence rate and it minimizes the
risk for the solver to fail to �nd a converged solution.
The turbulence in the draft tube �ow is modelled with the standard k–� model and by usage

of scalable wall functions on smooth walls (no-slip) [15]. The arguments for the use of this
model are that the main interest is to investigate methods for draft tube optimizations with
reasonable CPU usage. It is, however, well known that this turbulence model is unable to
predict all details of the �ow accurately [16, 17], but it should be mentioned that this model
is able to predict the main �ow features of the �ow in the draft tube [4–6].

2.3. Numerical optimization

For the numerical optimization the target values of the objective function are chosen to be
the average pressure recovery factor Cp and the energy loss factor �, as indirect indications
of the economical gains. Although there are several methods and algorithms to relate the
target values to each other, e.g. multi-objective optimization, Cp and � will be, respectively,
maximized and minimized individually. The average pressure recovery factor Cp is de�ned as

Cp=

1
Aout

∫∫
Aout
p dA− 1

Ain

∫∫
Ain

p dA

1
2
�
(
Qin
Ain

)2 (1)

where A is the area, p is the static pressure, Q is the �ow rate, � is the density and the
subscripts ‘in’ and ‘out’ correspond, respectively, to the inlet and the outlet. The energy loss
factor � is de�ned as

�=

∫∫
Ain

ptotu · n dA+
∫∫

Aout
ptotu · n dA

∫∫
Ain

pdynu · n dA
(2)

where n is the surface normal vector, pdyn is the dynamic pressure, ptot is the total pressure
and u is the velocity vector.
As optimization algorithm the RSM is chosen. The RSM can in general be described in

three phases; design of experiments (DOE), response surface (or polynomial) and optimization
phase [3]. In the �rst phase, a suitable number of points are chosen within or on the borders of
a prede�ned design space so that they re�ect the global behaviour of the object function. One
frequently used DOE technique is the face centred composite design (FCCD). This technique
generates (2N + 2N + 1) designs points and is common when the total number of design
variables N are relatively few. The design points are located at the corners of the design
space, the centres of the faces and at the centre of the design space. In the second phase,
the response surface phase, a low ordered polynomial (quadratic or cubic) is usually �tted to
the DOE points. This response surface approximation is actually a least square problem, so
it is computationally straightforward. In the third and �nal phase, the optimization phase, an
optimization algorithm is used to �nd the optimum point of the response surface, often with
a gradient-based algorithm. In this case, the fminbnd function in Matlab [18] was selected.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:911–924



916 B. D. MARJAVAARA AND T. S. LUNDSTR �OM

In the end, the �delity of the response surface model has to be scrutinized by analysing the
value of the coe�cient of multiple regression R2 and=or the adjusted coe�cient of multiple
regression R2a . A value near one is obtained when the �t is acceptable, whereas a lower value
should be taken as a sign of a poor �t. Another relevant measure is the root mean square
(rms) error �.
The optimization problem can be summarized as

minimize: f=−Cp and f= �

subject to: 106R6 610mm
(3)

where f is the objective function. The lower and upper constraint of R (10 and 610mm,
respectively) in Equation (3) is set by the CAD and grid generation techniques used here.
However, it is reasonable to assume that a draft tube with the lower constraint (10mm) has
approximately equal e�ciency as the original draft tube, since the radius is rather small.

3. COMPUTATIONAL DETAILS

A total number of 36 CFD simulations were carried out with di�erent coarseness of the
grid for the shape optimization and the error estimation. The DOE strategy for the RSM-
based shape optimization was evaluated on a modi�ed FCCD technique, where �ve ordinary
points (21 + 2× 1 + 1=5) are complemented by one extra point that is designed to evaluate
the behaviour of Cp and � for small radius R. A non-uniform design point distribution was
also chosen, since it is expected that the optimum design point is within a ‘small’ radius R,
according to R=10; 60; 110; 210; 410 and 610mm. For each radius R, six grids were gen-
erated automatically, composed of about 0.6M, 0.9M, 1.3M, 1.7M, 2.3M and 2.7M nodes,
respectively. The minimal angle for these grids sizes varied from 22◦ to 25◦ depending on the
radius and the grid size. The average y+ value at near-wall nodes was about 32 (from 1 to
126) for the draft tube wall and about 70 (from 1 to 235) for the runner wall. Regions with
low y+ values correspond to areas with separated �ows, where the velocity goes to zero, and
regions with the highest values can be traced to the inlet, runner and cone part of the draft
tube, where the velocity gradients are steeper.
Each CFD simulation was assumed converged when all rms residuals had dropped to about

10−5, which is su�cient for most engineering problems according to Reference [9]. The
iterative convergence for Cp and � was monitored by plotting the iterative error as a function
of the rms mass source residual ratio. By doing this, the iterative error could be estimated to
1.8% according to the method presented in Reference [14].
A grid error analysis was carried out for all R based on the three �nest grids (2.7M,

2.2M and 1.7M nodes) following the Richardson Extrapolation method presented in Reference
[19] and by using Cp and � as the dependent variables. However, it turned out that neither
the di�erencing scheme, the extrapolated values nor the grid error could be estimated in a
reasonable way. For example, the order of the scheme was often about 10 for Cp and negative
for �. The reason is that not all the grids are in the asymptotic range, which is exempli�ed
in Figure 3, where the grid error analysis for R=10 and 610mm with � as the dependent
variable is shown. The symbols correspond to DOE points, the line to the extrapolated curve
and � is the grid re�nement factor (�=1 and 1.62 corresponds to the �nest and coarsest
grid, respectively). Nevertheless, it is still possible to estimate the grid error by using the
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Figure 3. Richardson extrapolation on an assumed second-order scheme for R=10 and 610mm,
with � as the dependent variable.

Figure 4. The constructed cubic response surfaces. Symbols correspond to DOE designs, stars to optimal
solutions and lines to the response surfaces: (a) Cp; and (b) �.

same equations and by assuming that the actual order of the di�erencing scheme is between
one and two [20]. This also implies that only two grids are necessary for the estimation of
the grid error. Doing so on grid 2.7M and 1.7M nodes, the grid convergence error can be
estimated to about 0.4–0.7% in Cp and to about 1.2–2.6% in � for the �nest grid and all
radii. The 2.2M node grid was excluded in the above calculations since the objective value
distributions di�er slightly from the two other grids and follow more the behaviour of the
three coarsest grids (1.3M, 0.9M and 0.6M nodes). One explanation to this di�erence is that
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the grid re�nement factor used to generate the computational grids is not of equal multiple,
forcing the objective value distribution to alter. Thereby, the grids follow di�erent paths in the
asymptotic range. Another possible explanation is that the iterative convergence is not fully
satisfactory, which is more pronounced for the three �nest grids since the grid error becomes
smaller.

4. RESULT

4.1. Optimization analysis

The result of the shape optimization showed that a cubic response surface model performed
better than a simpler quadratic model on the two objectives, Cp and �. For the cubic model,
the R2a value was high and the � value was low, indicating that the �ts are of high accuracy,
see Table I. Also, the behaviour of the cubic models, Cp and � as a function of R, was similar
for all the six grid sizes, see Figure 4, where the symbols correspond to DOE designs, stars
to optimum solutions and lines to the constructed response surfaces models. It is also seen
that the estimated optimal solution of R is about 210mm for Cp and about 330mm for �,
see Table II and Figure 4. The values di�er as a function of grid size with about 46% for
Cp and about 13% for �. The large error in Cp can be traced to the scatter of the DOE
design point distribution for the two �nest grids. To check the reliability of the estimated
optimal solution, two additional CFD simulations were performed on the two coarsest grids
with the estimated optimal value of R. This showed a remarkable good estimation of the
credible optimal value for Cp and for �, see Table II. A remark is that all estimated optimum
solutions of Cp and � estimated an increase in the objective compared to the approximated
original design (R equal to 10mm), see Table II. The most interesting result, however, is the
unexpected small improvements of the objective functions Cp and �, around 0.02% within the

Table I. Result of the response surface analysis.

Quadratic response surface Cubic response surface

# of # of
R2 R2a � Mean terms R2 R2a � Mean terms

Cp 0.6M 0.97025 0.95042 0.00038 0.95437 6 0.99968 0.99920 0.00005 0.95437 6
Cp 0.9M 0.97552 0.95921 0.00034 0.95454 6 0.99998 0.99994 0.00001 0.95454 6
Cp 1.3M 0.97808 0.96346 0.00030 0.95613 6 0.99999 0.99999 0.00001 0.95613 6
Cp 1.7M 0.97211 0.95352 0.00027 0.95568 6 0.99880 0.99701 0.00007 0.95569 6
Cp 2.2M 0.99520 0.99201 0.00014 0.95636 6 0.99909 0.99772 0.00007 0.95636 6
Cp 2.7M 0.99673 0.99455 0.00011 0.95662 6 0.99998 0.99995 0.00001 0.95662 6
� 0.6M 0.94054 0.90090 0.00021 0.08056 6 0.99908 0.99770 0.00003 0.08056 6
� 0.9M 0.93389 0.88981 0.00021 0.08072 6 0.99988 0.99969 0.00001 0.08072 6
� 1.3M 0.88636 0.81060 0.00023 0.07897 6 0.99535 0.98838 0.00006 0.07897 6
� 1.7M 0.89222 0.82037 0.00013 0.07933 6 0.99873 0.99682 0.00002 0.07933 6
� 2.2M 0.91371 0.85619 0.00015 0.07890 6 0.99874 0.99684 0.00002 0.07890 6
� 2.7M 0.88641 0.81069 0.00012 0.07904 6 0.99793 0.99482 0.00002 0.07904 6
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Table II. Result of the CFD and optimization analysis.

DOE Cubic response surface

OPT OPT
10 (mm) 60 (mm) 110 (mm) 210 (mm) 410 (mm) 610 (mm) ROPT (mm) response CFD

Cp 0.6M 0.95514 0.95517 0.95513 0.95521 0.95464 0.95090 241 0.95525 0.95522
Cp 0.9M 0.95534 0.95532 0.95532 0.95542 0.95474 0.95112 227 0.95542 0.95542
Cp 1.3M 0.95687 0.95686 0.95689 0.95696 0.95630 0.95292 222 0.95696 —
Cp 1.7M 0.95614 0.95620 0.95632 0.95633 0.95598 0.95316 252 0.95641 —
Cp 2.2M 0.95702 0.95719 0.95715 0.95729 0.95624 0.95325 165 0.95727 —
Cp 2.7M 0.95732 0.95738 0.95744 0.95737 0.95643 0.95380 135 0.95744 —
� 0.6M 0.08034 0.08031 0.08032 0.08021 0.08028 0.08189 303 0.08013 0.08016
� 0.9M 0.08048 0.08050 0.08051 0.08038 0.08044 0.08201 309 0.08031 0.08037
� 1.3M 0.07880 0.07877 0.07887 0.07872 0.07865 0.08002 339 0.07859 —
� 1.7M 0.07929 0.07930 0.07924 0.07916 0.07908 0.07991 345 0.07904 —
� 2.2M 0.07880 0.07880 0.07880 0.07864 0.07864 0.07971 330 0.078570 —
� 2.7M 0.07899 0.07897 0.07898 0.07888 0.07882 0.07955 345 0.078795 —

Figure 5. Calculated streamlines from the runner and velocity contour plots:
(a) R=10mm; and (b) R=210mm.

interval 106R6 410mm. This can be compared to the experimental result that shows an
e�ciency improvement in the turbine of around 0.5%, and indicating that the improvements
of the pressure recovery factor should be even higher than that. Note that the numerically
obtained improvement is much smaller than the numerical uncertainties (iterative and grid
error). The most likely reason for this is that the physical model, used in the CFD calculations,
is not good enough to describe all the �ow features in the draft tube. Before discussing this
fact let us study the simulated �ow �eld in detail.

4.2. Flow analysis

The result of the calculated �ow �eld for all R was similar to what has been derived in
other studies [4–6]. It captured among other things regions with separated �ow, secondary
�ow with two main vortices and a vortex rope moving from one side of the draft tube to
the other, as shown in Figures 5 and 6. For small R the prediction consistently gave three
regions with separated zones: one small beneath the runner cone, a second one in the sharp
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Figure 6. Velocity vector and contour plots at the sharp heel corner:
(a) R=10mm; and (b) R=210mm.

Figure 7. The pressure distribution at a plane through the draft tube: (a) R=10mm; and (b) R=210mm.

heel corner and a third large one at the upper left wall just before the extension at the outlet,
seen downstream. For higher R the separation region in the sharp heel corner disappeared as
expected, but the e�ciency did not increase considerably as mentioned earlier, see Figure 6.
This can be due to the fact that an ‘arti�cial wall’ is built up by the �ow at the optimal R, and
therefore Cp and � are not in�uenced until R becomes large enough. In consensus there is no
remarkable alteration in the velocity �eld and the pressure distribution with respect to R, see
Figure 7. In fact, the only tendency to a di�erence in the pressure distribution occurs in the
sharp heel corner of the draft tube, compare Figure 8. Here, the pressure recovery is plotted
along the normalized upper, respectively, lower wall centre line and the rings correspond to
experimental measurements on the original draft tube (R=0mm) reported in Reference [13].
It can then be seen that most of the pressure is recovered in the cone. Also, the inlet radial
pressure is independent of R, see Figure 9. The disparities between the obtained radial pressure
distribution and the experimental values near the cone wall, as seen in Figure 9, can be traced
to the �rst grid layer adjacent to the wall, suggesting that it is a numerical issue rather than
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Figure 8. Pressure recovery along the centre line. Lines correspond to CFD simulations and rings to
experimental measurements in Reference [10]: (a) upper wall; and (b) lower wall.

Figure 9. The inlet radial pressure distribution. Lines correspond to CFD simulations and rings to
experimental measurements in Reference [10].

a �ow feature. This drop in the radial pressure also disappears a few grid layers downstream,
suggesting that the inlet must be extended upstream or the runner geometry included in the
computation process to obtain reliable values.
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5. DISCUSSION

The calculated simulated �ow �eld is similar to what has previously been obtained, but di�ers
from experimental redesign studies [4–8]. There are at least three possible explanations to the
discrepancies between the simulations and the experimental results, all being based on the
assumption made on the �ow in the CFD calculations. The �rst explanation is that the �ow
is assumed stationary although it is obviously transient, leaving many of the strongly impres-
sionable �ow features o�. Angular resolved inlet data are also available, but have not been
used in this study. The second explanation is related to the turbulence model; theoretically,
a more advanced turbulence model would predict the �ow �eld more accurately. It should,
however, be compared to the fact that the standard k–� simulations by the participants of
the second ERCOFTAC Turbine-99 Workshop predicted the major �ow features [4–6]. The
third and �nal explanation is the fact that modi�cations to the draft tube geometry may also
re�ect in alterations in the inlet velocity pro�le, and thereby also the outcome of the CFD
calculations, due to the elliptic behaviour of the solved equations [7]. Therefore, the runner
geometry should probably be included in the computational processes for the optimization,
to get signi�cant e�ciency improvements. It is, however, not taken into account here since
the inlet velocity pro�les are �xed. Three closely connected questions to this last explanation
that also can change the result are, the reliability of the symmetry assumption, the radial
velocity pro�le assumption and the tangential velocity pro�le assumption done here and in
the ERCOFTAC Turbine-99 workshops [4–6, 14]. The inlet velocity pro�le is most likely not
symmetric in this case, since it has been shown that the pro�le is not symmetric in a Francis
turbine [21]. For the radial velocity pro�le in its turn, it has already been shown that it has
a large in�uence on the �nal result [14]. In fact, the variations of Cp and � were larger than
those observed in this shape optimization study. In addition, the tangential velocity pro�le has
an alteration in signs near the runner wall, resulting in a huge velocity gradient and requiring
a very �ne grid resolution near the wall. This change of sign originates from the log wall
assumption and the third-order polynomial �tting of the measured tangential velocity pro�le,
whose correctness can be discussed. Finally, it should be recalled that the inlet section of the
draft tube is very close to the runner blades, see Figure 2.

6. CONCLUSION

This work demonstrates the potential of a procedure to automatically optimize new or exist-
ing parts of the waterways in a hydropower plant. To exemplify, a cubic response surface
model performs better than other models when �tted to simulated values. Its general shape
is furthermore independent of the grid size although the actual level varies. It also shows an
excellent agreement between predicted optimal values and CFD-simulated values at optimal
conditions. Hence, for cases where the underlying physical description of the �ow �eld is
correct, rather coarse grids can be used to predict the optimal design. However, for the draft
tube in focus, the small gains obtained by CFD for the optimal design as compared to exper-
imental results suggest that the physical description of the �ow must be enhanced before the
evaluated technique can be used more frequently for this type of component improvements.
In practice, the major explanations to the relatively small improvements derived by CFD are
that: (i) the �ow is assumed stationary although it is obviously transient, leaving many of
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the strongly impressionable �ow features o�; (ii) the k–� turbulent model is insu�cient; and
(iii) modi�cations to the draft tube geometry should re�ect in alterations in the inlet veloc-
ity pro�le. Three closely connected questions to this last explanation that also in�uence the
result are, is the reliability of the symmetry assumption, the radial velocity pro�le assumption
and the tangential velocity pro�le assumption done here and in the ERCOFTAC Turbine-99
workshops [4–6, 14]. An additional remark from this work is that it is of highest importance
to monitor the convergence of the objective functions, especially for �ne grids, when the
iterative error becomes greater than the grid error.
To conclude, the methodology proposed is working very well, but to get reliable and deci-

sive results for the present case the physical description of the �ow must be enhanced, since
the numerically obtained improvement is much smaller than the experimental improvement
and the numerical uncertainties. The way forward is to further enhance the �ow modelling
capabilities until the accuracy leads to errors less than one order of magnitude of the changes
in the objective function(s). Then it is also crucial to de�ne better independent parameters,
such that the variations induced on the objective function(s) are one order of magnitude larger
than the numerical uncertainties.
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